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ABSTRACT

Two approaches are used to characterize how accurately the north Alabama Lightning Mapping Array (LMA)
is able to locate lightning VHF sources in space and time. The first method uses a Monte Carlo computer
simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was
recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to,
the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e.,
chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system
has an overall rms timing error of 50 ns, but all other possible errors (e.g., anomalous VHF noise sources) are
neglected. The detailed spatial distributions of retrieval errors are provided. Even though the two methods are
independent of one another, they nevertheless provide remarkably similar results. However, altitude error esti-
mates derived from the two methods differ (the Monte Carlo result being taken as more accurate). Additionally,
this study clarifies the mathematical retrieval process. In particular, the mathematical difference between the
first-guess linear solution and the Marquardt-iterated solution is rigorously established thereby explaining why
Marquardt iterations improve upon the linear solution.

1. Introduction

The north Alabama Lightning Mapping Array (LMA)
is a multisensor network that measures the time of ar-
rival (TOA) of VHF radio waves produced by lightning.
Mathematical inversion of the TOA data allows one to
reconstruct the lightning channel in three-dimensional
space and in time. Operationally, the raw TOA data
stream is first processed to define what sets of TOA
values belong to single VHF lightning ‘‘point’’ sources.
But since this processing is imperfect, some of the de-
rived sets actually correspond to VHF noise (e.g., tele-
vision broadcast interference, local corona events from
nearby power lines and transformers), or to a mixture
of noise and lightning. Mathematical inversion of these
anomalous cases can lead to spurious and/or deceptive
results.
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Moreover, an accurate grouping of VHF sources into
flashes is essential for making good estimates of cell
flash rate, an important derivable from the LMA. Thun-
derstorm cells often develop in close proximity to one
another along clusters or lines while at the same time
producing very high flash rates. These storm systems
also produce individual lightning discharges that can
easily extend from one cell to the next. When the flash
rate and areal flash density increases, it can become
difficult (sometimes impossible) to determine to which
flash a particular VHF source belongs. The grouping
process is particularly difficult if the VHF source re-
trieval error is large or unknown. Consequently, there
is great interest in determining and understanding the
specific characteristics of source retrieval errors across
the LMA detection domain. One such community hav-
ing this interest is the National Space Science and Tech-
nology Center’s (NSSTCs) Short-term Prediction Re-
search and Transition (SPoRT) center. The SPoRT center
seeks to accelerate the infusion of National Aeronautics
and Space Administration (NASA) Earth Science En-
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terprise (ESE) observations, data assimilation (includ-
ing LMA data) and modeling research into National
Weather Service (NWS) forecast operations and deci-
sion-making at the regional and local level.

In this paper, an algorithm for retrieving the location
and time-of-occurrence of VHF lightning sources from
LMA TOA data is introduced, and the ability of the
LMA to accurately retrieve single VHF lightning sourc-
es is examined and characterized in detail. Sensor timing
error (50 ns) is accounted for, but all other forms of
data contamination and processing imperfections are not
considered. Section 2 describes the retrieval algorithm,
and section 3 discusses two methods for estimating the
retrieval errors. Section 4 provides error results, and
section 5 provides conclusions.

2. VHF source retrieval algorithm

A VHF source retrieval algorithm has been developed
at New Mexico Tech (NMT). It is a research-grade soft-
ware product that is used in conjunction with a variety
of LMA networks across the United States (P. Krehbiel
and J. Harlin 2002, personal communication). For con-
venience/clarity, we developed an independent retrieval
algorithm ‘‘from scratch’’ that is similar, but not iden-
tical to, the NMT algorithm. The new algorithm was
written in the IDL programming language at the NASA-
affiliated Global Hydrology and Climate Center
(GHCC), and is hereafter called the ‘‘GHCC algo-
rithm.’’ Having an intimate knowledge of all aspects of
this algorithm has allowed us to fully assess algorithm
test results. One should note that routine operational
analyses of north Alabama LMA data are still, and have
always been, performed using the NMT algorithm.

a. Overview

The GHCC algorithm retrieves VHF source location
and time-of-occurrence, (x, y, z, t), from LMA arrival
time data. Atmospheric refraction is neglected (i.e.,
straight path wave propagation from source to LMA
receiver is assumed). The algorithm involves a linear
matrix inversion to obtain an initial solution estimate in
Cartesian coordinates. This solution is improved using
a simple altitude constraint followed by a standard it-
erative approach due to Marquardt (1963). The spatial
portion of the final Marquardt-iterated solution (xs, ys,
zs, ts) is mapped to 1984 World Geodetic System
(WGS84) earth ellipsoid coordinates: (l 5 longitude,
f 5 geodetic latitude, z 5 altitude). The WGS84 earth
ellipsoid is actually a degenerate ellipsoid (i.e., an oblate
spheroid) having equatorial radius (semimajor axis)
equal to 6.378137 3 106 m 6 2 m, and polar axis
(semiminor axis) equal to 6.3567523142 3 106 m [see
DMA (1991) for further details]. Hence, the oblate na-
ture of the earth is accounted for in this work. The
altitude z is an extremely close approximation to the
true altitude above the WGS84 earth surface, and has

the advantage that it is far easier to code and compute
(see appendix A).

b. Linear inversion of transit equation

A linear inversion can be performed to obtain the
VHF source location and time of occurrence. It does
not matter what fixed Cartesian coordinate system one
uses to describe the problem, the form of the linear
retrieval will remain unchanged. To emphasize this fact,
we shall proceed by introducing a general Cartesian
coordinate system (X, Y, Z) whose origin and orientation
are arbitrary with respect to the earth. We define t to
be the time of occurrence of the lightning VHF point
source at location (X, Y, Z), and the ith LMA sensor is
located at (Xi, Yi, Zi). The arrival time ti of the VHF
wave at the ith LMA sensor is given by the simple
straight-path transit equation as provided in (1) of Ko-
shak and Solakiewicz (1996):

1
2 2 2 1/2t 5 t 1 [(X 2 X ) 1 (Y 2 Y ) 1 (Z 2 Z ) ] , (1)i i i ic

where c is the speed of light in a vacuum (the index of
refraction in the atmosphere is taken as unity). Rear-
ranging gives

2 2 2(X 1 Y 1 Z ) 2 2X X 2 2Y Y 2 2Z Zi i i i i i

2 2 2 2 2 21 (X 1 Y 1 Z ) 5 c (t 2 2t t 1 t ). (2)i i

The terms nonlinear in (X, Y, Z, t) can be removed by
simply picking the convention that t1 [ 0; that is, by
defining the excitation time of LMA site 1 to be ‘‘0 s.’’
With this convention, (2) becomes (for i 5 1)

2 2 2 2 2 2 2 2c t 2 X 2 Y 2 Z 5 X 1 Y 1 Z1 1 1

2 2X X 2 2Y Y 2 2Z Z. (3)1 1 1

Substituting (3) back into (2) for i 5 2, . . . , n gives
the desired linear system

1 2 2 2 2 (L 2 c t 2 L )2 2 2 1

 
_ 

 1 2 2 2 2(L 2 c t 2 L )2 n n 1 

 X
 (X 2 X ) (Y 2 Y ) (Z 2 Z ) 2ct2 1 2 1 2 1 2    Y

5 _ _ _ _ ,   
Z 

(X 2 X ) (Y 2 Y ) (Z 2 Z ) 2ct  n 1 n 1 n 1 n  ct 

(4)

where 5 1 1 , and the LMA network is2 2 2 2L X Y Zi i i i

assumed to have n $ 5 sensors. The linear system in
(4) can be written in matrix-vector form as
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g 5 Kf, (5)

with linear least squares solution given as

 X
 Y

21T Tf 5 5 (K K) K g. (6) 
Z 
ct 

Here, T represents matrix transposition.

c. Specific coordinate systems

As discussed above, the solution in (6) will work for
any fixed Cartesian coordinate system. In this section,
we specify two such systems as shown in Fig. 1. In one
case, a Cartesian coordinate system (u, y, w) can be used
that has an origin at the center of the earth. The location
of the VHF source is at

s 5 uû 1 y v̂ 1 wŵ, (7)

where u 5 s cosw cosl, y 5 s cosw sinl, w 5 s sin w.
Here, w is spherical latitude and l is longitude. Similar
expressions can be obtained to describe the location s i

of the i th LMA sensor by simply subscripting all the
variables (s, u, y, w, s, w, l) with an ‘‘i.’’ The altitude
of the VHF source above the WGS84 surface is very
well approximated by (see appendix A)

z(w) 5 s 2 r(w), (8)

where r(w) 5 [(cos2w)/a2 1 (sin2w)/b2]21/2 is the earth
radius, and a and b are the semimajor (equatorial) and
minor (polar) axes, respectively. The (u, y, w) Cartesian
coordinate system is, in turn, related to a spherical co-
ordinate system (s, w, l), where s is the distance from
the center of the earth to the VHF source.

The VHF source location shown in Fig. 1 can also
be defined with respect to a Cartesian coordinate system
(x, y, z) whose origin is fixed at an arbitrary LMA site,
say LMA site 1. The positive x direction (x̂) points
eastward, the positive y direction (ŷ) points approxi-
mately northward, and the positive z direction (ẑ 5 ŝ1)
points approximately toward the local zenith. If the earth
was a perfect sphere, then ŷ and ẑ would point exactly
north and toward the zenith, respectively. The VHF
source location in this system is simply

r 5 xx̂ 1 yŷ 1 zẑ. (9)

The two Cartesian coordinate systems {(u, y, w), (x, y,
z)} are related as follows:

s 5 s 1 r 5 s 1 A · p,1 1 (10)

where the vector p 5 xû 1 yv̂ 1 zŵ, and the dyadic
A is given by

A 5 2sinl ûû 2 sinw cosl ûv̂ 1 cosw cosl ûŵ1 1 1 1 1

1 cosl v̂ û 2 sinw sinl v̂ v̂ 1 cosw sinl v̂ŵ1 1 1 1 1

1 0ŵû 1 cosw ŵv̂ 1 sinw ŵŵ. (11)1 1

Although the vector p has components (x, y, z), it does
not represent the vector xx̂ 1 yŷ 1 zẑ. The explicit use
of the coordinate unit vectors (û, v̂, ŵ) in (11) reminds
us of this fact. Carrying out the dot product on the right-
hand side of (10) gives the explicit transformation equa-
tions between the two Cartesian coordinate systems

u 5 u 2 x sinl 2 y sinw cosl 1 z cosw cosl ,1 1 1 1 1 1

y 5 y 1 x cosl 2 y sinw sinl 1 z cosw sinl ,1 1 1 1 1 1

w 5 w 1 y cosw 1 z sinw . (12)1 1 1

d. Specific linear solutions

The general solution in (6) can be used to obtain
solutions in the two Cartesian coordinate systems de-
scribed in the previous section. Collectively, (f, g, K)
in (6) depend on the variables: (X, Y, Z, t, Xi, Yi, Zi,
ti); i 5 1, . . . , n. To obtain the solution in the (u, y,
w) system, the following substitutions (X → u, Y → y,
Z → w, Xi → ui, Yi → y i, Zi → wi) in (6) are made.
Hence, the solution vector in this case is f 5 (u, y, w,
ct) 5 (s, ct) from which we extract the WGS84-based
solution

2y a
21 21l 5 tan , f 5 tan tanw ,

21 2 1 2u b
2 2 2 1/2z 5 (u 1 y 1 w ) 2 r(w), (13)

where the spherical latitude w 5 tan21(w/ ).2 2Ïu 1 y
Similarly, to obtain the solution in the (x, y, z) system,

we make the replacements (X → x, Y → y, Z → z,
Xi → xi, Yi → yi, Zi → zi) in (6). The solution vector
in this case is f 5 (x, y, z, ct) 5 (r, ct); a detailed
interpretation of this solution is provided in appendix
B. The retrieved values (x, y, z) can be substituted into
(12) to obtain (u, y, w), which can in turn be substituted
into (13) to obtain (l, f, z).

The linear solutions described above are quite good
in horizontal position and time of occurrence, but have
pronounced errors in altitude (see Figs. 3 and 5 later in
the text, and the comments in section 4c, for specifics).
The fundamental reason for this is traceable to the fact
that the altitude difference between the various LMA
sensors is not very large. For this reason, the linear
solution is regarded only as a first guess, the final so-
lution being derived from some improvement on this
first guess.

e. Altitude constraints

The GHCC algorithm generates the linear Cartesian
solution f 5 (r, ct). We then apply a simple altitude
constraint: if the retrieved altitude (third component of
f) is less than 0 km or greater than 20 km, it is reassigned
to 8 km. [As discussed in section 2f, an iterative Mar-
quardt technique is then applied to further improve f.
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FIG. 1. Two Cartesian coordinate systems that can be used to describe VHF source location. The (u, y, w) Cartesian system origin is at
the center of the earth and uses the s vector shown; this system is associated with a spherical coordinate system (s, w, l). The (x, y, z)
Cartesian system origin is at s1 (the location of LMA site 1) and uses the r vector shown. Earth oblateness is a passive element of the
geometry, but oblateness is accounted for when source altitude and sensor latitude are considered.

FIG. 2. Color scale for the plots that follow. The D-error scale is also used for plots of the following
errors: (xrms, yrms, zrms, zrms, ctrms).
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This combination of approaches produces considerably
accurate solutions over a wide spatial domain (see sec-
tion 4).]

Although it is beyond the scope of the current writing,
one should note that it is possible to further improve
solution accuracy by invoking more sophisticated means
of improving the linear retrieval f [see, e.g., the con-
strained linear inversion techniques discussed in Twom-
ey (1977, chapter 6)]. Such an improvement can lead
to quicker and more accurate solution convergence in
the Marquardt algorithm. Because experimentation with
such altitude constraints might be of interest in future
studies, the GHCC algorithm purposely employs the

solution process f 5 (r, ct) 5 (x, y, z, ct) rather than f
5 (s, ct) 5 (u, y, w, ct) because it is easier to apply an
altitude constraint to z rather than the more complicated
term w 5 s sinw.

f. Marquardt iterations

In the GHCC algorithm, the altitude-constrained lin-
ear solution is improved using Marquardt iterations (see
Marquardt 1963; Bevington 1969, chapter 11). Briefly,
the Marquardt algorithm combines the best features of
a gradient search with a Newton-type iteration. Noting
that f 5 (r, ct), one begins with a chi-squared goodness-
of-fit function of the form

n1
2 2x ( f ) 5 [M ( f ) 2 ct ]O i i2s i51

2n1 1
2 2 2 1/25 c t 1 [(x 2 x) 1 (y 2 y) 1 (z 2 z) ] 2 ctO i i i i2 5 6s ci51 [ ]

n1
2 2 2 1/2 25 { f 1 [(x 2 f ) 1 (y 2 f ) 1 (z 2 f ) ] 2 ct } , (14)O 4 i 1 i 2 i 3 i2s i51

where s 5 c(50 ns) 5 15 m is the rms distance-equiv-
alent LMA sensor timing error. The model fitting func-
tion Mi(f) is expanded in a Taylor series. The resulting
x2 is then considered a function of the parameter in-
crements Df 5 (D f 1, D f 2, D f 3, D f 4), but all terms that
are nonlinear in these increments are neglected. Taking
a derivative of x2 with respect to the kth increment D f k

and setting equal to zero results in a linear equation.
Since k 5 1, . . . , 4 there are four such linear equations.
The linear system is solved for Df so that the solution
can be upgraded in the sense f9 5 f 1 Df. Diagonal
terms are added to the matrix of the linear system to
optimize convergence to the minimum. For example,
the algorithm normally attempts Newton-type iterations.
However, if it fails to reduce the x2 at any step, a pa-
rameter that weights the diagonal terms is modified so
that the algorithm behaves more like a gradient search.
The algorithm immediately attempts to return to a New-
ton-iteration as soon as it can. Marquardt iterations are
terminated whenever the tolerance parameter t 5
norm(Df)/[norm(f) 1 0.001] is driven below 1026; see
Marquardt (1963) for additional details.

3. Methods for characterizing errors

a. Monte Carlo simulation

A 78 3 78 region centered on the centroid of the LMA
network was analyzed. The region was equally parti-
tioned into subregions centered 0.058 apart so that
19 881 (5141 3 141) source locations could be tested;

the source altitude is taken as constant across the anal-
ysis region. At the center of each subregion, 100 sources
were analyzed. The analysis of each source was carried
out as follows:

1) generate arrival times at each LMA sensor due to
the source,

2) add timing error to each arrival time (to simulate
actual arrival time data),

3) apply the GHCC algorithm to the simulated data to
retrieve the source,

4) compute the retrieval error between the known
source and retrieved source.

In step 2 above, the error added to each arrival time is
chosen from a normal distribution having a mean of
zero, and a standard deviation of 50 ns. In step 4, the
mean geodesic distance error D along the WGS84 sur-
face between the known and retrieved sources is com-
puted, as well as the root-mean-square (rms) retrieval
errors in the variables: x, y, z, ct, z. The azimuth A (08–
3608) of the retrieved source relative to the known
source is also computed. With three different VHF
source altitudes (z 5 2, 7, and 12 km), a total of 5 964
300 (5 3 3 19 881 3 100) sources were analyzed in
the Monte Carlo simulation. We also perform two ad-
ditional simulations for VHF sources at z 5 7 km that
illustrate the effect of sensor altitudes and the effect of
the simple altitude constraint and Marquardt iterations
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FIG. 3a. (top) Spatial distribution of the mean geodesic distance error D, and (bottom) azimuths A of retrieved sources relative to known
source. Known sources are at z 5 7-km altitude, as indicated in the upper-left portion of each plot. See text for further description of the
azimuth plot. Fig. 3b. (top) Spatial distribution of altitude error zrms, and (bottom) the distance-equivalent timing error ctrms. These error plots
use the color scale in Fig. 2.

(see section 4 below for further details). Hence, a grand
total of 9 940 500 (5 5 964 300 1 2 3 19 881 3 100),
or almost 10 million known sources have been simulated
in this work.

Note that in our simulations we do not attempt to
account for VHF noise sources. In addition, we assume
that all sites in the network participate in the retrieval
process. In actual LMA storm analyses, these two as-
sumptions are often invalid. Nonetheless, our simula-

tions indicate what is realistically achievable by the
LMA network.

b. Curvature Matrix Theory

As discussed in section 2f, the Marquardt algorithm
is used to minimize a x2 function. The form of the x2

function was given in (14). As described in Bevington
(1969; chapter 11), the diagonal elements of the inverse
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FIG. 3c. (top) Spatial distribution of the mean value of reduced
chi-squared R, and (bottom) the mean value of the number of Mar-
quardt iterations N required to converge to a solution.

of a curvature matrix C can be used to estimate retrieval
errors

2 21 ] x
221C 5 ; E 5 C ; s 5 E . (15)i j f j jj2 ] f ] fi j

Here, Cij are the elements of the curvature matrix, and
E is an error matrix that is equal to the inverse of C.
Taking the square root of each diagonal element of E

gives the desired error estimates: (s 5 sx, s 5 sy,f f1 2

. . .) in the four unknowns (x, y, z, t).

4. Error results

A variety of error plots are provided in this section.
Figure 2 describes the color scale associated with these
plots. Each color represents a numerical range of values
for a particular variable (e.g., the pink color represents
geodesic distance errors between 0 and 50 m, but it also,
for example, represents solutions that had from 0 to 5
Marquardt iterations). The maximum horizontal range
for the plan view plots was determined by analyzing the
line-of-site of the highest altitude sensor (see appendix
C).

a. Monte Carlo tests of the GHCC algorithm

Figure 3a shows the spatial distribution of Monte Car-
lo results for D (top plot), and the specific angular dis-
tribution of azimuths A of the retrieved sources relative
to known sources (bottom plot). There are 10 sites in
the network, which has dimensions of 66.7 km in the
east–west, and 51.1 km in the north–south. Each lo-
cation on the D map is color-coded in accordance with
Fig. 2 to indicate how well a known source (situated 7
km above the map location) is retrieved in geodesic
distance. Note from the D map that the LMA can locate
VHF sources to within 50 m (on average) when the
sources are within or just outside the network perimeter.
For the A map, line segments (centered on 68 bins) are
used to indicate the azimuths of the retrieved sources
relative to the known source. For example, suppose 12
(of the 100 sources analyzed at a given location) fell in
a due easterly bin (878–938) relative to the location. In
this case, a due east (908) line segment would be drawn
from the given location, and it would be given a pink
color pursuant to Fig. 2, since P 5 12/100 5 12%. Most
retrieved azimuths are ‘‘directional’’ in the sense that
the retrieved source falls roughly along a radial line
running through the known source and the network cen-
troid. However, if the source is closer to or over the
network, the azimuth distribution tends to ‘‘fan out’’
meaning many values of A are statistically possible.

Figure 3b shows the spatial distribution of rms alti-
tude errors (top panel) and rms distance-equivalent tim-
ing errors (bottom panel). The rms altitude errors are
within 50 m over a portion of the network, but increase
to above 5 km for distant (i.e., .300 km) sources. Over-
all, the altitude errors are sufficiently small to conduct
many useful types of scientific investigations. If it were
not for the simple altitude constraint and Marquardt it-
erations, the altitude errors would be far worse (see
section 4c to follow). The values of D provided in Fig.
3a are smaller than the rms altitude errors (Fig. 3b, top)
but about the same as the rms distance-equivalent timing
errors (Fig. 3b, bottom).

Figure 3c shows the spatial distribution of mean val-
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FIG. 4. Spatial distribution of Cartesian location errors: (top) xrms, (middle) yrms, and (bottom) zrms derived from (left)
Monte Carlo simulation and (right) the Curvature Matrix Theory. Spatial distribution of ctrms (facing page) derived
from (left) Monte Carlo simulation and (right) the Curvature Matrix Theory.
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FIG. 4. (Continued)

ues of reduced chi-squared R [ x2/(n 2 n) 5 x2/6 (top)
and the mean number of Marquardt iterations N required
for a final solution (bottom). Here, n is the number of
sensors in the LMA network (i.e., 10), and n is the
number of unknowns in the problem (i.e., the dimension
of f which is four).

According to the chi-squared statistical theory dis-
cussed in Bevington (1969, chapter 10), a value of R
5 1 implies that the model-fitting function Mi(f) is a
good approximation to the parent function. A value of
R , 1 implies the same, but does not indicate any im-
provement of the fit relative to the case R 5 1. From
Figs. 2 and 3c, we see that the mean of R is less than
or equal to unity for many map locations. Interestingly,
the bottom plot in Fig. 3c shows that there is a scattered
‘‘ring of fire’’ near a range of about 300 km. Here,
solution convergence required more Marquardt itera-
tions than elsewhere in the analysis region. Moreover,
the number of Marquardt iterations required actually
decreases in the four distant corners of the plot.

b. Comparing simulations with theory

It is natural to wonder how well the Monte Carlo and
Curvature Matrix Theory error analyses agree in esti-
mating LMA retrieval errors. The rms values (xrms, yrms,
zrms, ctrms) from the Monte Carlo simulation are provided
in the left-hand column of Fig. 4, and the associated
error estimates from the Curvature Matrix Theory are
provided in the right-hand column. To the best of our
knowledge, this is the first time that detailed compari-
sons of this kind have been made. Since the Monte Carlo
approach tests an actual TOA retrieval algorithm (name-
ly the GHCC algorithm), it is considered to be the more
rigorous error estimate. One can see from Fig. 4 that
there is remarkably good agreement between the two
(independent) error estimation approaches. One excep-
tion is in the estimation of z retrieval errors. For the

most part, and for the z 5 7 km sources altitudes tested
here, the Curvature Matrix Theory overestimates the
altitude retrieval error. It occasionally underestimates
altitude errors for some (x, y) source locations.

c. Effect of altitude constraint and Marquardt
iterations

Recall that Fig. 3 provided error results for the GHCC
algorithm for sources at z 5 7 km. As discussed, the
GHCC algorithm uses a simple altitude constraint and
Marquardt iterations. To illustrate their importance, we
deactivated them and reran the Monte Carlo analyses.
In other words, we ran a Monte Carlo simulation on
solutions derived solely from the linear inversion f 5
(r, ct) described in section 2d; as always, this linear
solution was mapped back to (l, f, z) coordinates. We
found that the linear solution produced errors (D, ctrms)
that were very similar to, but slightly larger than, the
(D, ctrms) errors provided in Fig. 3. However, the errors
zrms (see Fig. 5) were substantially larger than the zrms

errors shown in Fig. 3. Hence, the altitude constraint
together with Marquardt iterations help to substantially
reduce altitude retrieval errors. Indeed, errors over the
network are reduced from (at least) 1 km to below 50
m, or an improvement of at least a factor of 20. A
detailed mathematical reason as to why the Marquardt
algorithm improves the altitude retrieval is provided in
appendix B. In short, the Marquardt algorithm improves
altitude retrievals because it minimizes a different (and
more appropriate) error function than does the linear
retrieval.

d. Effect of sensor altitude

One might wonder why the linear retrieval f 5 (r,
ct) leads to large altitude retrieval errors zrms [or zrms].
It turns out that the large errors arise from insufficient
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FIG. 5. Spatial distribution of zrms when the altitude constraint and
Marquardt routine are deactivated within the GHCC algorithm. Note
that the altitude errors are larger here than in the top plot of Fig. 3b,
which shows results with the altitude constraint and Marquardt routine
activated.

FIG. 6. Effect of sensor vertical separation on altitude retrieval
error. When the upper sensor is moved closer to the lower sensor,
the hatched area (denoting a portion of the projected solution un-
certainty) increases. The location of the VHF source (denoted by the
red star) stays fixed.

TABLE 1. Actual and virtual LMA sensor altitudes. The 10 sensors
within the LMA network showing actual and fictitiously assigned
sensor altitudes.

Site Site name

Sensor altitudes
in actual LMA
network (km)

Sensor altitudes
in virtual LMA
network (km)

1
2
3
4
5

A&M
Ardmore
Boeing
Fire tower
Green Mountain

0.2186
0.2881
0.1720
0.2397
0.4652

0.1
1.0
2.0
0.5
5.0

6
7
8
9

10

Hospital
Keel Mountain
Monte Sano
Owens
Putman

0.2137
0.4865
0.5074
0.2299
0.5211

10.0
8.0
7.0
9.0
4.0

FIG. 7. Spatial distribution of zrms for the virtual LMA network
when the altitude constraint and Marquardt routine are deactivated
within the GHCC algorithm. Note that these errors are far less than
that shown in Fig. 5 for the actual network. The only difference
between the virtual and actual networks is the sensor altitudes as
shown in Table 1.

vertical separation among the sensors within the LMA
network. This is a geometrical effect as illustrated in
Fig. 6; the red star indicates the location of a VHF
source, and the solid black squares represent the sensors.
For the ith sensor, (1) gives

2 2 2 1(x 2 x) 1 (y 2 y) 1 (z 2 z) 5 B ,i i i i

2 2 2 2(x 2 x) 1 (y 2 y) 1 (z 2 z) 5 B , (16)i i i i

where 5 c2(ti 6 50 ns 2 t)2 are constants. The two6Bi

equations in (16) define two concentric spheres with
origin at the ith sensor location r i 5 (xi, yi, zi). The
inner sphere radius is and the outer sphere radius is2Bi

. If we consider just one sensor, the VHF source must1Bi

be located somewhere on the inner or outer concentric

spherical surfaces, or within the volume bounded by
these surfaces. We call this domain of possible VHF
source locations the spherical shell volume V defined
by one sensor. With two sensors, there are two spherical
shell volumes (V1, V2) and the VHF source location is
constrained to be within the volume defined by the
intersection of these two volumes; that is, the volume
V [ (V1 ù V2). Figure 6 shows a simple example for
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FIG. 8. Spatial distribution of (top) D, (middle) zrms, and (bottom) ctrms for known source altitudes of (left) z 5 2 km
and (right) z 5 12 km.
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two vertically separated sensors; the 3D geometry is
projected into the vertical plane. A portion of the pro-
jected intersection of spherical shells is shown as a
hatched area (left diagram in Fig. 6). Note that when
the top sensor is moved closer to the bottom sensor
(right diagram in Fig. 6), the fix on the VHF source
location worsens (i.e., the hatched area increases).

To demonstrate and further clarify the specific nature
of this geometrical effect, we again performed a Monte
Carlo simulation on the linear algorithm f 5 (r, ct); that
is, on the GHCC algorithm with both the altitude con-
straint and Marquardt routine deactivated. However, this
time we conducted the simulation on a different (i.e.,
virtual) sensor network. The virtual network is identical
to the actual LMA network except that the virtual sen-
sors span a much greater vertical range (see Table 1).
Once again, we found that the errors (D, ctrms) were
very similar to the (D, ctrms) errors provided in Fig. 3.
However, the values of zrms (see Fig. 7) were signifi-
cantly smaller than that provided in Fig. 5. This spe-
cifically illustrates the geometrical effect depicted in
Fig. 6.

e. Effect of source altitude

As a final test of the GHCC algorithm, we performed
Monte Carlo simulations for known sources at z 5 2
km, and z 5 12 km, respectively. The results are pro-
vided in Fig. 8 and can be compared with the earlier
results in Fig. 3 for z 5 7 km. We found little difference
in the (D, ctrms) errors for z 5 2, 7, and 12 km. However,
there are some noteworthy differences in zrms errors for
the three source altitudes (i.e., compare the top plot of
Fig. 3b with the middle plots of Fig. 8). The altitude
retrieval is typically more accurate when the source is
at z 5 7 km than when at z 5 2 or 12 km. In general,
zrms need not monotonically increase with range; such
an assertion is an oversimplification. The magnitude of
zrms depends on source location, network geometry, spe-
cific simulated measurement errors, accuracy of first-
guess location (from the linear inversion), and on the
specific shape of the x2 hypersurface. For example, the
presence of relative minima in x2 can have a dramatic
impact on error results.

5. Conclusions

As we have stated, an accurate grouping of VHF
sources into flashes is essential for estimating cell flash
rate, an important derivable from the LMA. But if the
VHF source retrieval error is large or unknown, the
accuracy of such VHF source groupings and the com-
puted flash rate is suspect.

The results provided in Fig. 3 (and other plots not
shown for reasons of brevity) now quantify LMA re-

trieval errors across a large domain, and to exceptional
spatial resolution. Consequently, these results will di-
rectly benefit and improve LMA-derived flash rate es-
timates. Overall, the error analyses provide insight to
researchers who apply LMA data to a variety of studies
(e.g., severe weather warning/forecasting, lightning sat-
ellite ground-validation, lightning physics, lightning cli-
matology). For example, the azimuth plot in Fig. 3a
(bottom) shows an interesting radial elongation (‘‘spok-
ing’’) error that can be seen in real LMA storm analyses,
but is herein quantified. Despite the advantages of this
work, it is important to emphasize that the error results
are ‘‘best case’’ scenarios since we have neglected VHF
noise, and since we have assumed that all 10 sites par-
ticipate in the retrieval process. In real LMA storm anal-
yses this is seldom the case.

In addition, the results provided in this work are of
mathematical significance. First, we have shown exactly
why Marquardt iterations improve upon a linear inver-
sion: the linear inversion minimizes one error function
with a side constraint, whereas the Marquardt algorithm
minimizes a closely related, but more appropriate, error
function. Second, we have shown that two independent
error analyses (a Monte Carlo simulation of actual in-
versions, and a theoretical approach based on Curvature
Matrix Theory) provide remarkably similar results ex-
cept for the altitude retrieval error. Because the Monte
Carlo simulation employs (and tests) and actual TOA
inversion algorithm (the GHCC algorithm), the Monte
Carlo results are more realistic/accurate than the Cur-
vature Matrix Theory results. Therefore, the Curvature
Matrix Theory both underestimates and overestimates
LMA altitude retrieval errors (depending on source lo-
cation relative to the network). This statement is im-
portant since some retrieval error analyses of LMA net-
works across the United States have used the Curvature
Matrix Theory.
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FIG. A1. True height h above the oblate earth surface, and altitude z as calculated in the GHCC algorithm.
The numerical difference between h and z is exceedingly small (see Fig. A2). We have made z unrealistically
large in this figure to clarify how it differs from h.

Transfer Office for their assistance in procuring LMA
hardware.

APPENDIX A

Approximating Source Altitude above the Oblate
Earth

Recall that the GHCC algorithm produces a solution
vector f 5 (xs, ys, zs, cts). Using the transformations in
(12) and (13), the spatial portion of this solution is con-
verted to (l 5 longitude, f 5 geodetic latitude, z 5
altitude) coordinates. Figure A1 shows the geometry
involved. Note that z is not quite the true altitude of
the VHF source above the oblate earth surface. The true
altitude of the VHF source is shown as the variable h.
The numerical difference between z and h is negligible
when z is small as is the case for all LMA VHF source
retrievals. Figure A1 purposely places the VHF source
at an unrealistically high altitude to clarify the geo-
metrical/numerical difference between z and h.

The computation of z is straightforward. From (13)
we had

2 2 2 1/2z(u, y, w) 5 (u 1 y 1 w ) 2 r, (A1)

where r 5 r(w(u, y, w)) 5 [(cos2w)/a2 1 (sin2w)/b2]21/2

is the earth radius, and the spherical latitude w 5 w(u,
y, w) 5 tan21(w/ ). The constants a 52 2Ïu 1 y
6.378137 3 106 m and b 5 6.3567523142 3 106 m

are the mean equatorial and polar radii of the Earth,
respectively (DMA 1991). Note that (A1) is a highly
simple/economical calculation given (u, y, w).

Obtaining the correct height h takes some extra effort
and, as we will see, gains us little. The elliptical curve
defining the projected oblate earth surface in Fig. A1
can be described by

2 2q w
F(q, w) 5 1 2 1 5 0, (A2)

2 2a b

where q2 5 u2 1 y2. The gradient of F evaluated at a
point G on the surface of the earth directly below the
VHF source is a normal vector n given by

1 q wG Gn 5 nn̂ 5 =F | 5 q̂ 1 ŵ, (A3)G 2 22 a b

where (qG, wG) defines point G, and the factor of ½ was
inserted for convenience. Since the VHF source resides
at location (q, w), there exists some factor m such that

q q̂ 1 w ŵ 1 mn 5 qq̂ 1 wŵ.G G (A4)

Substituting (A3) into (A4), simplifying, and equating
components gives

q w
q 5 , w 5 . (A5)G G2 21 1 m/a 1 1 m/b

Using (A5) to evaluate F(qG, wG) yields a quartic equa-
tion in the factor m given by



556 VOLUME 21J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

4 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2m 1 2(a 1 b )m 1 [(a 1 b ) 1 2a b 2 a q 2 b w ]m 1 2a b (a 1 b 2 q 2 w )m
2 2 2 2 2 2 2 21 a b (a b 2 b q 2 a w ) 5 0. (A6)

FIG. A2. The extremely small error (« 5 z 2 h) involved in es-
timating h with z. Here, z 5 20 km. For smaller values of z, the peak
decreases.

There are four roots to this equation (Beyer 1980); for
brevity we omit the explicit, and rather lengthy, ex-
pressions for the roots. For VHF sources in the vicinity
of the LMA where both q , a and w , b will hold,
all coefficients in (A6) are positive except the last (con-
stant term) coefficient. Hence, Descartes’ ‘‘Law of
Signs’’ (Barnett and Ziegler 1989, chapter 6) indicates
that there will be only one positive real root among the
four roots. Upon obtaining the appropriate root from
(A6), (A5) can be used to obtain (qG, wG). Noting that
q 5 , the calculation of the true height is then2 2Ïu 1 y
given by the familiar distance formula

2 2 1/2 2 2h(u, y , w) 5 Ï[(u 1 y ) 2 q ] 1 (w 2 w ) . (A7)G G

Hence, the error « in using z to approximate h is ob-
tained by differencing (A1) with (A7)

«(u, y, w) 5 z(u, y, w) 2 h(u, y, w). (A8)

Of course, this error increases for sources with the high-
est altitudes. Taking z 5 20 km (a very high altitude
VHF source), and solving the quartic in (A6) so that h
in (A7) can be computed, we found that the error « is
under 120 mm as shown in Fig. A2. Since this error is
negligible, and since computing z is far simpler than
computing h [which involves solving the quartic equa-
tion of (A6) each time a retrieval is performed], the
GHCC algorithm implements the simple expression in
(A1).

APPENDIX B

Significance of the Linear Solution, f 5 (r, ct)

In this appendix we clarify the mathematical signifi-
cance of the linear solution provided in section 2d of the
main text, which can be summarized for i 5 1, . . . , n
sensors as

 x
 y

21T Tf 5 5 (K K) K g, 
z 
ct 

 (x 2 x ) (y 2 y ) (z 2 z ) 2ct2 1 2 1 2 1 2 
K 5 _ _ _ _ , 

 
(x 2 x ) (y 2 y ) (z 2 z ) 2ctn 1 n 1 n 1 n 

1 2 2 2 2 (r 2 c t 2 r )2 2 2 1

 
2 2 2 2g 5 _ , r 5 x 1 y 1 z . (B1)  i i i i

 1 2 2 2 2(r 2 c t 2 r )2 n n 1 

To do this, we first generalize a constrained least squares
linear retrieval result provided in Twomey (1977, chap-
ter 6), and then demonstrate how the linear result in
(B1) is a minimum of a particular error function.

Given a set of measurements y, we are interested in
finding an independent vector x that minimizes the fol-
lowing error function

2 T Te(x) 5 (y 2 Ax) 1 g(x Hx 1 v x 1 a). (B2)

Here, A and H are arbitrary real matrices, (vT, a) are
constants, and g is a constant that weights how strongly
one wishes to emphasize the constraint term (xTHx 1
vTx 1 a). [If one restricts H to be symmetric, and spec-
ifies that vT 5 0, a 5 0, then (B2) reduces to the same
error function examined in Twomey (1977, section
6.3).] Assuming there are i 5 1, . . . , n measurements,
and j 5 1, . . . , p unknowns, the expression in (B2) can
be rewritten in component form as

2n p

e(x) 5 y 2 A xO Oi i j j1 2i51 j51

p p

1 g x x H 1 · · · 1 x x HO O1 j j1 k j jk1 2 1 2[ j51 j51

p p

1 · · · 1 x x H 1 y x 1 a . (B3)O Op j jn j j1 2 ]j51 j51

Taking the derivative of (B3) and setting equal to zero
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(i.e., ]e/]xk 5 0; k 5 1, . . . , p), and carrying out some
algebra yields the linear system of equations

p n g g
A A 1 (H 1 H ) x 1 yO O ik i j k j jk j k[ ]2 2j51 i51

n

5 A y . (B4)O ik i
i51

Since k 5 1, . . . , p (B4) can be written in matrix–vector
notation as

g g
TT TA A 1 (H 1 H ) x 1 v 5 A y. (B5)[ ]2 2

So the value of x that minimizes (B2) is
21

g g
T T Tx 5 A A 1 (H 1 H ) A y 2 v . (B6)1 2[ ]2 2

We identically recover the constrained linear inversion
result x 5 (ATA 1 gH)21ATy in Twomey [1977, Eq.
(6.4)] as a special case of (B6) when H is symmetric
and (a 5 0, vT 5 0); that is, H symmetric ⇒(g/2)(H 1
HT) 5 (g/2)(2H) 5 gH, and vT 5 0 ⇒ v 5 0. The result
in (B6) is of general use in a wide range of linear in-
version problems that require the flexible application of
physical constraints beyond those afforded by the mea-
surements contained in y. If no physical constraints are
applied beyond the measurements y (i.e., if g 5 0), then
(B2) and (B6) reduce to the familiar least squares result;
that is, the minimum of (y 2 Ax)2 is x 5 (ATA)21 ATy.

Next, we clarify the significance of the linear retrieval
in (B1). The fundamental TOA transit equation can be
written

1
t 5 t 1 |r 2 r|. (B7)i ic

To solve (B7), we considered in (14) an error function
of the form

n

2 2 2E 5 s x 5 [|r 2 r| 2 c(t 2 t)] . (B8)O i i
i51

However, in order to understand the significance of the
linear solution in (B1), we consider a closely related
error function that is subject to a side constraint

n1
2 2 2 2C( f ) 5 [|r 2 r| 2 c (t 2 t) ] ,O i i2 i51

side contraint: t [ 0. (B9)1

Here, f 5 (r, ct) and the factor ½ has been inserted for
convenience. Expanding the first equation in (B9) and
noting that r2 5 x2 1 y2 1 z2 we get

n1
2 2 2C( f ) 5 {(r 2 c t )O

2 i51

2 2[x x 1 y y 1 z z 2 ct (ct)]i i i i

2 2 2 21 (r 2 c t )} . (B10)i i

Applying the side constraint in (B9) to the transit equation
in (B7) immediately gives r2 2 c2t2 5 2(x1x 1 y1y 1
z1z) 2 . This relation can be used to remove the nonlinear2r1

term r2 2 c2t2 appearing in (B10) thereby yielding the
special (side-constrained) error function Cc(f):

n1
2C ( f ) 5 [A x 1 B y 1 C z 1 D (ct) 1 E ] ,Oc i i i i i2 i51

(B11)

where Ai 5 2(x1 2 xi), Bi 5 2(y1 2 yi), Ci 5 2(z1 2
zi), Di 5 2cti, Ei 5 2 c2 2 . But (B11) can be2 2 2r t ri i 1

rewritten as

1
T TC ( f ) 5 ( f H f 1 v f 1 a), (B12)c 2

where the H matrix is given by

n n n n 
2A A B A C A DO O O Oi i i i i i i

i51 i51 i51 i51

n n n n

2A B B B C B DO O O Oi i i i i i i 
i51 i51 i51 i51

 H 5 , (B13)
n n n n

2A C B C C C DO O O Oi i i i i i i
i51 i51 i51 i51

n n n n

2 A D B D C D DO O O Oi i i i i i i
i51 i51 i51 i51 

and the vector and scalar have the form

n n n n

Tv 5 2 A E 2 B E 2 C E 2 D E ,O O O Oi i i i i i i i[ ]i51 i51 i51 i51

n

2a 5 E . (B14)O i
i51

A comparison of (B1) with (B13) and (B14) indicates
that

2T TH 5 4K K, v 5 28K g, a 5 4g . (B15)

Substituting (B15) into (B12) and recalling that g 5 Kf
gives

1
T T 2TC 5 [ f (4K K) f 2 8g K f 1 4g ]c 2

2 T TT5 2g 1 2 f K K f 2 4g K f
2 2 T T TT5 g 1 (g 1 f K K f 2 3g K f ) 2 g K f

T T1 f K K f
2 T T T TT5 g 1 (g g 1 f K g 2 3g g) 2 g K f

T T1 f K K f
2 T T T TT T T5 g 1 ( f K g 1 f K g 2 3 f K g) 2 g K f

T T1 f K K f
T T T TT T5 g g 2 f K g 2 g K f 1 f K K f

T 25 (g 2 K f ) (g 2 K f ) 5 (g 2 K f ) . (B16)
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FIG. C1. Geometry for estimating horizontal range of LMA network.
Atmospheric refraction and earth oblateness are neglected.

TABLE C1. LMA maximum ground range. Numerical values of
maximum ground range for VHF sources of various altitudes.

VHF source altitude, z (km) Maximum ground range, L (km)

2
7

12
20

241.102
380.005
472.212
585.649

But this means that Cc(f) is of the form of (B2) with
g 5 0. Hence, the minimum of Cc(f) is just the familiar
least squares solution f 5 (KTK)21 Kg. [This same result
can be found by taking derivatives of (B11) with respect
to x, y, z, and f 4 5 ct, setting each to zero, and solving
the resulting system of linear equations.]

Hence, the significance of the linear solution in (B1)
is now clear. It is the minimum of an error function C(f)
given in (B9) with the additional side constraint that t1

[ 0. This linear solution should not be confused with
the minimum of the closely related error function given
in (B8). Since the difference in squared distances are
used in (B9), an analytic solution was tractable. But the
difference in regular distances used in (B8) has made
it thus far too difficult to obtain an analytic solution (so
a numerical method such as the Marquardt algorithm is
applied). The importance of the linear solution in (B1)
is that, though it is not exactly the minimum to the error
function in (B8), it is a reasonably close initial guess;
this fact makes it highly useful for obtaining solution
convergence when Marquardt iterations are applied.

APPENDIX C

Maximum Ground-Range of the LMA Network

Neglecting atmospheric refraction and the oblateness
of the earth, Fig. C1 shows one way to estimate the
maximum range along the earth’s surface between a
LMA sensor at height zo and a VHF source at altitude
z. To obtain the maximum range for the LMA network,

we select the highest antenna site in the network, which
is at Putman, Alabama. The Putman antenna altitude is
zo 5 0.5211 km, and the geodetic latitude of the site is
fo 5 34.86924748. The spherical latitude of the site is
then wo 5 tan21(b2/a2 tanfo) 5 34.688952068. We will
assume a spherical earth with radius ro 5 r(wo) 5 (1/
a2 cos2wo 1 1/b2 sin2wo)21/2 5 6371.187216 km. Given
the geometry in Fig. C1, the ground range L to the VHF
source is

L 5 (u 1 u )r1 2 o

r ro o21 215 cos 1 cos r . (C1)o1 2 1 2[ ]r 1 z r 1 zo o o

In the main text of this writing, we considered VHF
source altitudes of z 5 2, 7, and 12 km. We also an-
ticipate that z 5 20 km is a reasonable upper limit for
most lightning VHF sources. Table C1 summarizes the
ground ranges for the four source altitudes mentioned.
Since most of our error plots in section 4 of the main
text were performed for sources at z 5 7 km, we chose
a 78 3 78 analysis region [i.e., one-half of this full range
is (3.58) (p/180)ro 5 389.194 km, which just exceeds
the value in Table C1 for z 5 7 km].

REFERENCES

Barnett, R. A., and M. R. Ziegler, 1989: College Algebra. 4th ed.
McGraw-Hill Publishing Company, 517 pp.

Bevington, P. R., 1969: Data Reduction and Error Analysis for the
Physical Sciences. McGraw-Hill, 336 pp.

Beyer, W. H., 1980: Standard Mathematical Tables. 25th ed. CRC
Press, 613 pp.

DMA, 1991: Department of defense world geodetic system 1984. 2d
ed. Defense Mapping Agency Tech. Rep. 8350.2, 12 pp.

Koshak, W., and R. Solakiewicz, 1996: On the retrieval of lightning
radio sources from time-of-arrival data. J. Geophys. Res., 101,
26 631–26 639.

Marquardt, D. W., 1963: An algorithm for least-squares estimation
of nonlinear parameters. J. Soc. Ind. Space Appl. Math., 11, 431–
441.

Twomey, S. A., 1977: Introduction to the Mathematics of Inversion
in Remote Sensing and Indirect Measurements. Dover Publi-
cations, 243 pp.


